

2* Implementation - How do we acheve our alms?

How maths is structured acpess Berpy Hill

	$Y 1$	$Y 2$	$Y 3$	$Y 4$	$Y 5$	$Y 6$
PIACE VALUE	X	X	X	X	X	X
ADDITION AND SUBTRACTION	X	X	X	X	X	X
MULTIPICATION AND DIVISION	X	X	X	X	X	X
FRRCTIONS	X	X	X			
DECIMALS				X	X	X
FRACTIONS, DECIMALS, PERCCNTAGES				X	X	X
RATIO AND PROPORTION						X
AICEBRA						X
MEASUREMENT	X	X	X	X	X	X
GEOMETRY	X	X	X	X	X	X
STATISTICS		X	X	X	X	X

Mathemaatical Thinking

We aim to develop all three key areas of the National Curriculum in order to give the children the knowledge and skills they need to become confident mathematicians.

\#rifirl Impact- Haw will we werw we have acheveced our a ames?

Pupils are number fluent and confident when recalling key facts such as number bonds and
times tables facts.

Pupils can apply
knowledge and skills learned in maths to learned in maths
solve problems.

Pupils have a deep understanding of maths and are able to make mathematical ideas

Pupils can apply their mathematical knowledge in other jects such
Science.

Pupils are confident and competent
mathematicians who have the belief that they 'can do maths'

The National Curriculum

Key Stage 1

The principal focus of mathematics teaching in key
stage 1 is to ensure that pupils develop confidence stage 1 is to ensure that pupils develop confidence
and mental fluency with whole numbers, counting and mental fluency with whole numbers, counting
and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools]. At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compar different quantities such as length, mass, year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency. Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1 .

Lower Key Stage 2

The principal focus of mathematics teaching in lower The principal focus of mathematics teache
key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers. At this stage, pupils should develop their ability to solve a range of problems,
including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work. Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling

Upper Key Stage 2

The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio. At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they
need to describe them. By the end of year 6 , pupils need to describe them. By the end of year 6, pu
should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages. Pupils should read, spell and pronounce mathematical vocabulary correctly..

1
1
1

Ascessment

Flashback 4 activities are used daily to give the children opportunities to continue to revisit prior learning. They also provide teachers with th assess retention of knowledge.

White Rose Maths end of block assessments are completed at the end of each unit in maths to check progress and identify gaps in knowledge and understanding.

NFER assessments are administered in Spring and Summer term in Years 1, 3, 4 and 5

SATs papers are administered in Spring and Summer term in Year 2 and 6

Disciplinary Skills SKILLS OF A MATHEMATICTAN

	mrs	grap	cint	(tar 3	crat	vaik	crie
amant	$=$	$=$	2w	\pm	$=$	$=$	
gunsix	$=$	$=$	5	$=$	$\underline{\underline{L}}$	$=$	\pm
ux we	\pm	\pm	$=$	$=$	\pm	\pm	
			\pm	\cdots	\pm	=	

ADDTITON AND SUBTRACTION

Disciplinary Skills SKLLLS OF A MATHEMATICTAN

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
RECALL, REPRESENT, USE		Read, write and interpre mathematical statements subtraction (-) and equals (=) signs \qquad facts within 20.	Show that addition of two order (commutative) and subtraction of one num from another cannot. Recall and use addition and subtraction facts to 20 fluently, and derive and use lated facts up to 100 \qquad and subtraction and use this solve missing number problems.	Estimate the answer to a operations to check answer	Estimate and use inverse to a calculation	Use rounding to check answers to calculations and determine, in the context of the proble accuracy,	
CALCULITIONS		Add and subtract one-digit and two-digit including zero				Add and subtract numbers mentally with increasingly large numbers. or Add and subtract numbers with more than four-digits, (columnar addition and subtraction)	Perform mental calculations, oncluding with mixed numbers. Use their knowledge of the order of operations to carry four operations.
SOLVE PROBLEMS	Imore end liess	olve one-step proble involve addition and objects and pictorial representations, and missing number problems such as $7=$? -9			Sole	Sold edditiond	

Multipication and division

 SKILLS OF A MATHEMATICIAN| | EYFS | YEAR 1 | YEAR 2 | YEAR 3 | YEAR 4 | YEAR 5 | YEAR 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { RECALL, } \\ \text { REPRESENT, } \\ \text { USE } \end{gathered}$ | - Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally. | | - Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
 - Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. | - Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables, | - Recall multiplication and division facts for multiplication tables up to 12×12
 - Use place value, known and derived facts to multiply and divide mentally, including multiplying by 1 and 0 ; dividing by 1 ; multiplying together three numbers.
 - Recognise and use factor pairs and commutativity in mental calculations. | - Identify multiples and factors, including finding all factor pairs of a number and common factors of two numbers.
 - Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
 - Establish whether a number up to 100 is prime and recall prime numbers up to 19
 - Recognise and use square numbers and cube numbers, and the notation for squared (${ }^{(2)}$ and cubed (${ }^{3}$) | - Identify common factors, common multiples and prime numbers
 - Use estimation to check answers to calculations, and determine, in the context of a problem, an appropriate degree of accuracy. |
| CALCULATIONS | | | - Calculate mathematical statements for multiplication and division withing the multiplication tables and write them using the multiplication (x), division ($($) and equals (=) sign. | - Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. | - Multiply two-digit and three-digit numbers by one-digit numbers using formal written layout. | - Multiply numbers up to four digits by a one or two-digit number using a formal written method, including long multiplication for two-digit numbers.
 - Multiply and divide numbers mentally drawing upon known facts.
 - Divide numbers by up to four-digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.
 - Multiply and divide whole numbers and those involving decimals by 10,100 and 1000. | - Multiply multi-digit numbers up to fourdigits by a two-digit whole number using the formal written method of long multiplication.
 - Perform mental calculations, including with mixed number operations and large numbers.
 - Divide numbers up to four-digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context.
 - Divide numbers up to four-digits by a two-digit whole number using the formal written method of long division and interpret remainders as whole number remainders, fractions or by rounding as appropriate for the context. |
| $\begin{gathered} \text { SOLVE } \\ \text { PROBLEMS } \end{gathered}$ | Sharing | Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. | - Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. | - Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. | - Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one-digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects. | - Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes.
 - Solve problems involving multiplication and division, including scaling by simple rates. | - Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. |
| COMBINED OPERATIONS | | | | | | - Solve problems, involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. | - Use their knowledge of the order of operations to carry out calculations involving the four operations. |

FRACTIONS

Disciplinary Skills

SKLLLS OF A MATHEMATCAMI

	EYFS	YEAR 1	YEAR 2	$\text { YEAR } 3$	$\text { YEAR } 4$	$\text { YEAR } 5$	YEAR 6
RECOGNISE AND WRITE		- Recognise, find and name a half as one of two equal parts of an object, shape or quantity. - Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	- Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$, and $3 / 4$ of a length, shape, set of objects or quantity.	- Recognise, find and write fractions of a discrete set of objects; unit fractions and non-unit fractions with small denominators. - Recognise and use fractions as numbers; unit fractions and nonunit fractions with small denominators. - Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 .	- Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.	- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. - Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number (e.g. $2 / 5+$ $4 / 5=6 / 5=11 / 5$)	
COMPARE			- Recognise the equivalence of $2 / 4$ and $1 / 2$	- Recognise and show, using diagrams, equivalent fractions with small denominators. - Compare and order unit fractions and fractions with the same denominator.	- Recognise and show, using diagrams, families of common equivalent fractions.	- Compare and order fractions whose denominators are all multiples of the same number.	- Use common factors to simplify fractions; use common multiples to express fractions in the same denomination. - Compare and order fractions, including fractions >1.
CALCULATIONS			- Write simple fractions e.g. $1 / 2$ of $6=$ 3	- Add and subtract fractions with the same denominator within 1 whole e.g. $5 / 7+1 / 7=6 / 7$	- Add and subtract fractions with the same denominator.	- Add and subtract fractions with the same denominator and denominators that are multiples of the same number. - Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.	- Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. - Multiply simple pairs of proper fractions writing the answer in its simplest form (e.g. $1 / 4 \times 1 / 2=1 / 8$) - Divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6$)
$\begin{gathered} \text { SOLVE } \\ \text { PROBLEMS } \end{gathered}$				- Solve problems that involve all of the above.	- Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including nonunit fractions where the answer is a whole number.		

DECIMALS

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
RECOGNISE AND WRITE					Recognise and write decimal equivalents of any number of enths and hundredth Recognise and write deci	 - Recoging and se theusandths hindied intsend deemmal	Identify the value of each digit in numbers.
COMPPRE							
CALCUATIONS AND PROBLEMS							

FRACTIONS, DECIMALS AND PERCENTACES

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
FRACTIONS, DECMMALS AND PERCENTAGES					$\begin{aligned} & \text { Solve simple measure and money } \\ & \text { problems involving fractions and } \\ & \text { decimals to two decimal places. } \end{aligned}$		

RATIO AND PROPOPTION

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
RATO AND PROPORTION							

Note- although algebraic notation is not introduced until Year 6, algebraic thinking starts much earlier as exemplified by the 'missing number' objectives from Year 1, 2 and 3

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
AlgEBRA		Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations and missing number operations such as $7=?-9$		- Solve problems, including missing number problems			

	ars	vint	YGiR2	vaik	giga	Giris	Grier
$\underset{\substack{\text { ung } \\ \text { krinars }}}{ }$	=	$=$		프를	\cong		$\underline{=}$ $=$ $=$
ramer		\pm	$=$	$\underline{=}$	$\underline{=}$	$\underline{=}$	

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
TIME					Read, write and covert time between analogue and digital 12- Solve problems involving converting from hours to minutes minutes to seconds; years to months; weeks to days		
PERTMETER, AREA, VOLUME							

GEOMFTRY

Disciplinary Skills SKILLS OF A MATHEMATICIAN

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
2-D SHAPES	Name 2D shapes Build with Use for making patterns Everyday shapes in the environment (shape hunts) Tangrams- rotate and manipulate shapes. Shapes can be made within shapes	- Recognise and name common 2-D shapes (e.g. rectangles [including squares], circles and triangles)	- Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line - Compare and sort common 2-D shapes and everyday objects - Identify 2-D shapes on the surface of 3-D shapes (e.g. a circle on a cylinder and a triangle on a pyramid)	- Draw 2-D shapes	- Identify lines of symmetry in 2-D shapes presented in different orientations - Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	- Distinguish between regular and irregular polygons based on reasoning about equal sides and angles - Use the properties of rectangles to deduce related facts and find missing lengths and angles	- Draw 2-D shapes using given dimensions and angles - Compare and classify geometric shapes based on their properties and sizes - Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the size of the radius
3-D SHAPES	Making models Naming properties Sorting Everyday objects	- Recognise and name common 3-D shapes (e.g. cuboids [including cubes], pyramids and spheres)	- Recognise and name common 3-D shapes (e.g. cuboids [including cubes], pyramids and spheres) - Compare and sort common 3-D shapes and everyday objects	- Make 3-D shapes using modelling materials; recognise 3 -D shapes in different orientations and describe them		- Identify 3-D shapes, including cubes and other cuboids, from 2-D representations	- Recognise, describe and build simple 3-D shapes, including making nets

GEOMETRY

Disciplinary Skills

SKllLS OF A MATHEMATCAMN

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
ANGLES AND LINES	Stand in a straight line			- Recognise angles as a property of a shape or a description of a turn - Identify right angles, recognise that two right angles make a halfturn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle. - Identify horizontal and vertical lines and pairs of perpendicular and parallel lines	- Identify acute and obtuse angles and compare and order angles up to two right angles by size. - identify lines of symmetry in 2-D shapes presented in different orientations. - Complete a symmetric figure with respect to a specific line of symmetry	- Know angles are measures in degrees: estimate and compare acute, obtuse and reflex angles. - Draw given angles and measure them in degrees - Identify: - Angles at a point and one whole turn (total 360°) > angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°	- Recognise angles where they meet at a point are on a straight line, or are vertically opposite, and find missing angles - Find unknow angles in any triangles, quadrilaterals, and regular polygons.
POSITION AND DIRECTION	Where is the teddy bear? Moving in different directions. Forwards, backwards, left, right. Obstacle courses	- Describe position, direction and movement, including whole, half, quarter and three-quarter turns	- Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise) - Order and arrange combinations of mathematical objects in patterns and sequences.		- Describe positions on a 2-D grid as coordinates in the first quadrant. - Describe movements between positions as translations of a given unit to the left/ right and up'/ down - Plot specified points and draw sides to complete a given polygon	- Identify, describe and represent the position of a shape following a reflection or translation using the appropriate language and know that the shape has not changed.	- Describe positions on the full coordinates grid (all four quadrants) - Draw and translate simple shapes on the coordinate plane, and reflect them in the axis

STHTISTISS

Disciplinary Skills

	EYFS	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
PRESENT AND INTEPPRET	Tally without the gate		Interpret and construct simple pictograms, tally charts, block		Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.	Complete, read and interpret information in tables, including	Interpret and construct pie charts and line graphs and use them to
SOLVE PROBLEMS							

VCCABULARY PROCRESSOON OF A MATHEMATCLCAN

	EYFS	YEAR 1	$\text { YEAR } 2$	$\text { YEAR } 3$	$\text { YEAR } 4$	$\text { YEAR } 5$	$\text { YEAR } 6$
PLACE VALUE	Count Subitise Order/ ordinal Compare Forwards Backwards Numerals Digit One more One less Equal to More than Less (fewer) than	Sort Represent Multiples Partitioning Ones Tens	Count in steps Count in multiples Place value Estimate Compare	Ascending Descending 10 or 100 more 10 or 100 less Hundreds	Positive numbers Negative numbers Through zero Roman numerals 1000 more 1000 less Thousands Round To the nearest	Ten thousands One hundred thousands Powers of Integer	Millions Ten millions
ADDITION AND SUBTRACTION	Add Plus Altogether Total Take away/minus Number bonds Part Whole digit	Addition/ add Subtraction Difference Equals Facts Problems Missing number inverse	Sum 2-digit number Commutative	Column addition Column subtraction Exchange Estimate	4-digit number Operations methods		
mutiplication AND Division	Double Half Twice as many Equal Unequal Share Group Odd Even	Multiplication Division Arrays	Multiplication tables Commutative Repeated addition	Exchange Mathematical statements Missing number problems Integer scaling problems Correspondence problems Derived facts	Factor pairs Formal written layout Distributive law Remainders	Multiplies Factors Prime numbers Square numbers Cube numbers Short division Product Dividend Divisor Quotient Operations	Multi-digit numbers Long division
FRRCTIONS, DECIMALS AND PERCENTAES		Whole Half Quarter Equal parts	Three quarters Third Equivalent fractions Unit fractions Non unit fractions Numerator Denominator One whole	Tenths	Decimal equivalence Hundredths Convert Proper fractions Improper fractions Decimal point	Fifth Thousandths Mixed numbers Per cent \% Factors Integer Complements	
RATIO AND PROPORTION							Relative size Missing values Integer multiplication Percentages Scale factor Unequal sharing \& grouping
AlGEBRA							Formulae Linear number sequences Algebraically Equation Unknowns Combinations Variables

VCCABULARY PROCRESSSON OF A MATHEMATCLAN

	EYFS	$\text { YEAR } 1$	YEAR 2	$\text { YEAR } 3$	$\text { YEAR } 4$	$\text { YEAR } 5$	YEAR 6
MEASUREMENT (MEASURE AND LENGTH)	Measure Wide(er) Narrow(er) Compare Long(er)(est) Short(er)(est) Length	Compare	Standard units Estimate Order Record results Centimetre (cm) Metre (m)	$\begin{aligned} & \text { Millimetre (mm) } \\ & \text { Perimeter } \end{aligned}$	Kilometres (km) Rectilinear figure Area	Decimal notation Scaling Metric units Imperial units Inches Compound shape Irregular shapes Square centimetres Square metres	Conversion Miles Formulae Parallelograms Triangles feet
MEASUREMENT (HELCHT, WEIGHT AND (APPCCTY)	Height Long(er)/ short(er) Tall(er)/short(er) Weight Capacity Heavy/light Heavier than Lighter than Big/bigger/biggest Full/empty More than Less than Half/half full	Mass Volume	Kilogram (kg) Gram (g) Quarter full Three quarters full Litres (I) Millilitres (ml) Temperature Celsius			Cubic centimetre Pounds Pints	Cubic metre Cubic millimetre Cubic kilometre Gallons Stones Ounces
MEASUREMENT (TIME)	Time Quicker Slower Earlier Later Before After First Next Today Yesterday Tomorrow Morning Afternoon Evening Day Week Hour Minutes	Chronological order Days of the week Months of the year Month Year O'clock Half past Second	Intervals of time Quarter past/to Duration	Analogue clock Roman numerals 12-hour clock 24-hour clock a.m./p.m. Noon Midnight Leap year Digital	Convert		
MEASUREMENT (MONEY)		Money Coins Notes Pounds (£) Pence (p)	Value Change				

VCCABULARY PROCRESSSON OF A MATHEMATCLAN

	EYFS	YEAR 1	YEAR 2	$\text { YEAR } 3$	$\text { YEAR } 4$	$\text { YEAR } 5$	YEAR 6
geanetry PROPERTES OF SHPRES)	2-D shapes Rectangle Square Circle Triangle Characteristics 3-D shapes Cuboids Cubes Cones Spheres Curved Straight Flat	Sides Corners Properties Pyramids Faces	Pentagon Hexagon Line of symmetry Properties Cylinder Edges Vertices Vertex	Right-angle triangle Heptagon Octagon Polygon Properties Prism	Isosceles Equilateral Scalene Trapezium Rhombus Parallelogram Kite Geometric shapes Quadrilaterals	Regular polygon Irregular polygon	Radius Diameter Circumference Dimensions
GEOMETRY LINES)				Orientattions Angles Acute angle Obtuse angle Right angle Greater than a right angle Less than a right angle Horizontal line Vertical line Perpendicular line Parallel line		Reflex angle Degrees Protractor One whole turn Angles on a straight line Angles around a point Vertically opposite Missing angles	
GEOMETRY (POSTITIN AND DRECTON)	Over Under Between Around Through On Into Next to Behind Beneath Order Repeat Patterns On top of	Position Direction Movement Whole turn Quarter turn Half turn Three-quarter turn	Clockwise Anti-clockwise Straight line Rotation Arrange Sequences		Co-ordinates First quadrant Grid Translation Plot Polygon Axis	Reflection	Four quadrants Co-ordinate plane
STATISTICS			Pictograms Tally chart Block diagram Category Sorting Totalling Comparing Horizontal Vertical	Table Bar chart One-step problem Two-step problem	Time graph Discrete data Continuous date Line graph Comparison problem Sum problem Difference problem Calculate Interpret	Timetable Two-way table	Pie chart Mean

EYFS (MEASURE, SHAPE AND SPPTIAL THINKING)

MATHEMATICS SEOUENCMG

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
¢ $\frac{5}{3}$ $\frac{7}{4}$	Getting to Know You			Compare Size, Mass \& Capacity Exploring Pattern			Circles and Triangles Positional Language			Shapes with 4 Sides. Time			Consolidation	
$\frac{n_{0}}{\substack{\circ}}$	Compare Mass (2) Compare Capacity (2)			Length \& Height Time			3d-shapes Patterns			Consolidation				
$\begin{aligned} & \frac{4}{\bar{d}} \\ & \frac{1}{E} \\ & \stackrel{\rightharpoonup}{亏} \end{aligned}$	Spatial Reasoning (1) Match, Rotate, Manipulate			Spatial Reasoning (2) Compose and Decompose			Spatial Reasoning (3) Visualise and Build			Spatial Reasoning (4) Mapping				

Term 1	Term 2	Term 3
Pupils will build on previous experiences of number from their home and nursery environments, and further develop their subitising and counting skills. They will explore the composition of numbers within 5. They will begin to compare sets of objects and use the language of comparison. Pupils will: - identify when a set can be subitised and when counting is needed - subitise different arrangements, both unstructured and structured, including using the Hungarian number frame - make different arrangements of numbers within 5 and talk about what they can see, to develop their conceptual subitising skills - spot smaller numbers 'hiding' inside larger numbers - connect quantities and numbers to finger patterns and explore different ways of representing numbers on their fingers - hear and join in with the counting sequence, and connect this to the 'staircase' pattern of the counting numbers, seeing that each number is made of one more than the previous number - develop counting skills and knowledge, including: that the last number in the count tells us 'how many' (cardinality); to be accurate in counting, each thing must be counted once and once only and in any order; the need for 1:1 correspondence; understanding that anything can be counted, including actions and sounds - compare sets of objects by matching - begin to develop the language of 'whole' when talking	Pupils will continue to develop their subitising and counting skills and explore the composition of numbers within and beyond 5 . They will begin to identify when two sets are equal or unequal and connect two equal groups to doubles. They will begin to connect quantities to numerals. Pupils will: - continue to develop their subitising skills for numbers within and beyond 5 , and increasingly connect quantities to numerals - begin to identify missing parts for numbers within 5 - explore the structure of the numbers 6 and 7 as ' 5 and a bit' and connect this to finger patterns and the Hungarian number frame - focus on equal and unequal groups when comparing numbers - understand that two equal groups can be called a 'double' and connect this to finger patterns - sort odd and even numbers according to their 'shape' - continue to develop their understanding of the counting sequence and link cardinality and ordinality through the 'staircase' pattern - order numbers and play track games - join in with verbal counts beyond 20, hearing the repeated pattern	Pupils will consolidate their counting skills, counting to larger numbers and developing a wider range of counting strategies. They will secure knowledge of number facts through varied practice. Pupils will: - continue to develop their counting skills, counting larger sets as well as counting actions and sounds - explore a range of representations of numbers, including the 10-frame, and see how doubles can be arranged in a 10 -frame - compare quantities and numbers, including sets of objects which have different attributes - continue to develop a sense of magnitude, e.g. knowing that 8 is quite a lot more than 2 , but 4 is only a little bit more than 2 - begin to generalise about 'one more than' and 'one less than' numbers within 10 - continue to identify when sets can be subitised and when counting is necessary - develop conceptual subitising skills including when using a rekenrek

YEAR 1

MATHEMATICS SEOUENCNG

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{aligned} & \frac{c}{E} \\ & \frac{2}{z} \\ & \frac{1}{z} \end{aligned}$	Number Place value (within 10)					Number Addition and subtraction (within 10)						
$\begin{aligned} & \text { 이 } \\ & \text { c } \\ & \text { in } \end{aligned}$	Number Place (with	value n 20)		Number Addition and subtraction (within 20)			Number Place (with	value n 50)	Measurement Length and height		Measurement Mass and volume	
$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{E}} \\ & \stackrel{y}{E} \\ & \text { जn } \end{aligned}$	Number Multiplication and division			Number Fractions			Number Place value (within 100)		Measurement Time			

Term 1	Term 2	Term 3
Pupils will have an opportunity to consolidate the Early Learning Goals and continue to explore the composition of numbers within 10, and the position of these numbers in the linear number system. Pupils will: - subitise within 5 , including when using a rekenrek, and re-cap the composition of 5 - develop their understanding of the numbers 6 to 9 using the ' 5 and a bit' structure - compare numbers within 10 and use precise mathematical language when doing so - re-cap the order of numbers within 10 and connect this to ' 1 more' and ' 1 less' than a given number - explore the structure of even numbers (including that even numbers can be composed by doubling any number, and can be composed of 2 s) - explore the structure of the odd numbers as being composed of 2 s and 1 more - explore the composition of each of the numbers 6, 8, and 10 - explore number tracks and number lines and identify the differences between them	Pupils will continue to explore the composition of numbers within 10 and explore addition and subtraction structures and the related language (without the use of symbols). Pupils will: - explore the composition of each of the numbers 7 and 9 - explore the composition of odd and even numbers, seeing that even numbers can be made of two odd or two even parts, and that odd numbers can be composed of one odd part and one even part - identify the number that is two more or two less than a given odd or even number, identifying that two more/ less than an odd number is the next/ previous odd number, and two more/ less than an even number is the next/ previous even number - explore the aggregation and partitioning structures of addition and subtraction through systematically partitioning and re-combining numbers within 10 and connecting this to the part-part-whole diagram, including using the language of parts and wholes - explore the augmentation and reduction structures of addition and reduction using number stories, including introducing the 'first, then, now' language structure	Pupils will explore the composition of numbers within 20 and their position in the linear number system. They will connect addition and subtraction expressions and equations to 'number stories'). Pupils will: - explore the composition of the numbers 11 to 19 as '10 and a bit' and compare numbers within 20 - connect the composition of the numbers 11 to 19 to their position in the linear number system, including identifying the midpoints of 5, 10 and 15 - compare numbers within 20 - understand how addition and subtraction equations can represent previously explored structures of addition and subtraction (aggregation/ partitioning/ augmentation/ reduction) - practise retrieving previously taught facts and reason about these

YEAR 2

MATHEMATICS SEQUENCING

Term 1	Term 2	Term 3
Pupils will have an opportunity to consolidate their understanding and recall of number bonds within 10 ; they will re-cap the composition of the numbers 11 to 20 and reason about their position within the linear number system. Pupils will: - review the composition of the numbers 6 to 9 as ' 5 and a bit' - compare numbers using the language of comparison and use the symbols <>= - review the structure of even numbers (including exploring how even numbers can be composed of two odd parts or two even parts) and the composition of each of 6,8 and 10 - review the structure of odd numbers (including exploring how odd numbers can be composed of one odd part and one even part) and the - consolidate their understanding of the numbers 10 and 20 as ' 10 and a bit' - consolidate their understanding of the linear number system to 20 and reason about midpoints	Pupils will have an opportunity to use their knowledge of the composition of numbers within 10 to calculate within 20 ; they will explore the links between the numbers in the linear number system within 10 to numbers within 100, focusing on multiples of 10 and the midpoint of 50 . Pupils will: - explore how the numbers 6 to 9 can be doubled using the ' 5 and a bit' and ' 10 and a bit' structure - use doubles to calculate near doubles - use bonds of 10 to reason about bonds of 20, in which the given addend is greater than 10 - use known number bonds within 10 to calculate within 20 , working within the 10boundary - use their knowledge of bonds of 10 to find three addends that sum to 10 - use their knowledge of the composition of numbers within 20 to add and subtract across the 10-boundary - use their understanding of the linear number system to 10 to position multiples of 10 on a 0 100 number line and reason about midpoints	Pupils will have further opportunities to use their knowledge of the composition of numbers within 10 to calculate within 20 and to reason about equations and inequalities. Pupils will: - continue to explore a range of strategies to subtract across the 10-boundary - review bonds of 20 in which the given addend is greater than 10 , and reason about bonds of 20 , in which the given addend is less than 10 - practise previously explored strategies to support their reasoning about inequalities and equations - review doubles and near doubles and transform additions in which two addends are adjacent odd/ even numbers into doubles - consolidate previously taught facts and strategies through continued, varied practice

YEAR 3

MATHEMATICS SEOUENCNG

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number Place value			Number Addition and subtraction					Numbe Mult and			
$\begin{aligned} & \text { 음 } \\ & \text { 등 } \end{aligned}$	Number Multiplication and division B			Measurement Length and perimeter			Number Fractions A			Measurement Mass and capacity		
$\begin{aligned} & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\varepsilon}{E} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	Number Fractions B		Measurement Money		Measurement Time			Geometry Shape		Statis	tics	든 믐 흥 긍 0

YEAR 4

MATHEMATICS SEOUENCNG

	Week 1	Week 2	Week 3	Week 4	Week 5	Week	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
氠	Number Place value				Number Addition and subtraction				Number Multiplication and division \mathbf{A}			
$\begin{aligned} & \text { 은 } \\ & \text { 둔 } \end{aligned}$	Number Multiplication and division B			Measurement Length and perimeter		Number Fractions				Number Decimals A		
$\stackrel{\rightharpoonup}{シ}$ E゙ जै	Number Decim	nals B	Measurement Money		Measurement Time		은 믕 응 0 0 0	Geometry Shape		$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & \text { b } \end{aligned}$	Geometry Position and direction	

YEAR 5

MATHEMATICS SEOUENCNG

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{aligned} & \stackrel{c}{\varepsilon} \\ & \frac{y}{3} \\ & \hline \end{aligned}$	Number Place	value		Number Addit and subtr	on ction	Number Multi and	licatio vision		Number Fract	ons A		
$\begin{aligned} & \text { 윤 } \\ & \text { 듬 } \end{aligned}$	Number Multi and d	lication vision		Number Fract	ons B	Number Decir perce	als and tages		Measure Perim and	nent eter rea	Stati	tics
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{\varepsilon} \\ & \tilde{u} \end{aligned}$	Geometr Shape			Geometr Positi and direc	n on	Number Decim				Measure Conve units	ment rting	

YEAR 6

MATHEMATICS SEOUENCNG

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number Place value		Number Addition, subtraction, multiplication and division					Number Fractions A		Number Fractions B		
$\begin{aligned} & \text { 음 } \\ & \text { ì } \end{aligned}$	Ratio		Algeb		Number Decir		Number Fraction decim and percer	ns, als tages	Measur Area, perim and volum		Statis	
	Geometr Shape				Them	d proj	cts, C	nsolid	tion a	d prob	lem so	ving

